Machine Learning And Ai For Healthcare

Download Machine Learning And Ai For Healthcare PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Ai For Healthcare book now. This site is like a library, Use search box in the widget to get ebook that you want.

If the content Machine Learning And Ai For Healthcare not Found or Blank , you must refresh this page manually.

Machine Learning And Ai For Healthcare


Machine Learning And Ai For Healthcare
DOWNLOAD
READ

Download Machine Learning And Ai For Healthcare PDF/ePub, Mobi eBooks by Click Download or Read Online button. Instant access to millions of titles from Our Library and it’s FREE to try! All books are in clear copy here, and all files are secure so don't worry about it.



Machine Learning And Ai For Healthcare


Machine Learning And Ai For Healthcare
DOWNLOAD
READ


Author : Arjun Panesar
language : en
Publisher: Apress
Release Date : 2020-12-25

Machine Learning And Ai For Healthcare written by Arjun Panesar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-25 with Computers categories.


This updated second edition offers a guided tour of machine learning algorithms and architecture design. It provides real-world applications of intelligent systems in healthcare and covers the challenges of managing big data. The book has been updated with the latest research in massive data, machine learning, and AI ethics. It covers new topics in managing the complexities of massive data, and provides examples of complex machine learning models. Updated case studies from global healthcare providers showcase the use of big data and AI in the fight against chronic and novel diseases, including COVID-19. The ethical implications of digital healthcare, analytics, and the future of AI in population health management are explored. You will learn how to create a machine learning model, evaluate its performance, and operationalize its outcomes within your organization. Case studies from leading healthcare providers cover scaling global digital services. Techniques are presented to evaluate the efficacy, suitability, and efficiency of AI machine learning applications through case studies and best practice, including the Internet of Things. You will understand how machine learning can be used to develop health intelligence–with the aim of improving patient health, population health, and facilitating significant care-payer cost savings. What You Will Learn Understand key machine learning algorithms and their use and implementation within healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Manage the complexities of massive data Be familiar with AI and healthcare best practices, feedback loops, and intelligent agents Who This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Machine Learning And Ai For Healthcare


Machine Learning And Ai For Healthcare
DOWNLOAD
READ


Author : Arjun Panesar
language : en
Publisher: Apress
Release Date : 2019-02-04

Machine Learning And Ai For Healthcare written by Arjun Panesar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-04 with Computers categories.


Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Artificial Intelligence And Machine Learning In Healthcare


Artificial Intelligence And Machine Learning In Healthcare
DOWNLOAD
READ


Author : Ankur Saxena
language : en
Publisher: Springer Nature
Release Date : 2021-05-06

Artificial Intelligence And Machine Learning In Healthcare written by Ankur Saxena and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-06 with Science categories.


This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.

Artificial Intelligence In Healthcare


Artificial Intelligence In Healthcare
DOWNLOAD
READ


Author : Adam Bohr
language : en
Publisher: Academic Press
Release Date : 2020-06-21

Artificial Intelligence In Healthcare written by Adam Bohr and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-21 with Computers categories.


Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Practical Ai For Healthcare Professionals


Practical Ai For Healthcare Professionals
DOWNLOAD
READ


Author : Abhinav Suri
language : en
Publisher: Apress
Release Date : 2021-12-14

Practical Ai For Healthcare Professionals written by Abhinav Suri and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.


Practical AI for Healthcare Professionals Artificial Intelligence (AI) is a buzzword in the healthcare sphere today. However, notions of what AI actually is and how it works are often not discussed. Furthermore, information on AI implementation is often tailored towards seasoned programmers rather than the healthcare professional/beginner coder. This book gives an introduction to practical AI in the medical sphere, focusing on real-life clinical problems, how to solve them with actual code, and how to evaluate the efficacy of those solutions. You’ll start by learning how to diagnose problems as ones that can and cannot be solved with AI. You’ll then learn the basics of computer science algorithms, neural networks, and when each should be applied. Then you’ll tackle the essential parts of basic Python programming relevant to data processing and making AI programs. The Tensorflow/Keras library along with Numpy and Scikit-Learn are covered as well. Once you’ve mastered those basic computer science and programming concepts, you can dive into projects with code, implementation details, and explanations. These projects give you the chance to explore using machine learning algorithms for issues such as predicting the probability of hospital admission from emergency room triage and patient demographic data. We will then use deep learning to determine whether patients have pneumonia using chest X-Ray images. The topics covered in this book not only encompass areas of the medical field where AI is already playing a major role, but also are engineered to cover as much as possible of AI that is relevant to medical diagnostics. Along the way, readers can expect to learn data processing, how to conceptualize problems that can be solved by AI, and how to program solutions to those problems. Physicians and other healthcare professionals who can master these skills will be able to lead AI-based research and diagnostic tool development, ultimately benefiting countless patients.

Machine Learning In Healthcare


Machine Learning In Healthcare
DOWNLOAD
READ


Author : Bikesh Kumar Singh
language : en
Publisher: CRC Press
Release Date : 2022-02-18

Machine Learning In Healthcare written by Bikesh Kumar Singh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-18 with Computers categories.


Artificial intelligence (AI) and machine learning (ML) techniques play an important role in our daily lives by enhancing predictions and decision-making for the public in several fields such as financial services, real estate business, consumer goods, social media, etc. Despite several studies that have proved the efficacy of AI/ML tools in providing improved healthcare solutions, it has not gained the trust of health-care practitioners and medical scientists. This is due to poor reporting of the technology, variability in medical data, small datasets, and lack of standard guidelines for application of AI. Therefore, the development of new AI/ML tools for various domains of medicine is an ongoing field of research. Machine Learning in Healthcare: Fundamentals and Recent Applications discusses how to build various ML algorithms and how they can be applied to improve healthcare systems. Healthcare applications of AI are innumerable: medical data analysis, early detection and diagnosis of disease, providing objective-based evidence to reduce human errors, curtailing inter- and intra-observer errors, risk identification and interventions for healthcare management, real-time health monitoring, assisting clinicians and patients for selecting appropriate medications, and evaluating drug responses. Extensive demonstrations and discussion on the various principles of machine learning and its application in healthcare is provided, along with solved examples and exercises. This text is ideal for readers interested in machine learning without any background knowledge and looking to implement machine-learning models for healthcare systems.

Demystifying Big Data And Machine Learning For Healthcare


Demystifying Big Data And Machine Learning For Healthcare
DOWNLOAD
READ


Author : Prashant Natarajan
language : en
Publisher: CRC Press
Release Date : 2017-02-15

Demystifying Big Data And Machine Learning For Healthcare written by Prashant Natarajan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-15 with Medical categories.


Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.